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Abstract—In this article a Bayesian filter approximation is
proposed for simultaneous multiple target detection and tracking
and then applied for object detection on video from moving
camera. The inference uses the evidence lower bound optimisation
for Gaussian mixtures. The proposed filter is capable of real time
data processing and may be used as a basis for data fusion.
The method we propose was tested on the video with dynamic
background,where the velocity with respect to the background is
used to discriminate the objects. The framework does not depend
on the feature space, that means that different feature spaces can
be unrestrictedly used while preserving the structure of the filter.

Keywords—Multiple object tracking, Bayesian filtering, Varia-
tional Gaussian mixtures

I. INTRODUCTION

Up to date, the approximations of the Bayesian filter
models gained widely renowned popularity for object tracking.
However, the difficulties appear when fully automatic object
detection is needed, and even worse, we do not know the
number of the objects. In this case, we need to solve multiple
object tracking problem with clutter which can be formulated
as follows.

Let us have measurements which can be assigned either to
one of the objects or to clutter, and each object may include
several measurements. The aim is to find the object mea-
surements within the measurement set, to assign them to the
objects given pre-defined dependency model, and to determine
the characteristics of the objects using the measurements. For
each object we assume that the measurements, corresponding
to this object, are close to each other in terms of some feature
space. The noise measurements are close to each other but
not homogeneous, and they are supposed to have substantial
differences comparing to the objects’ measurements. Also we
assume that the noise measurements constitute majority in the
measurement set.

The Bayesian filter recursion is decomposed into two steps:

p(Xk|Z1...(k−1)) =
=
∫
p(Xk|Xk−1)p(Xk−1|Z1...(k−1))dXk−1,

(Prediction),
(1)

p(Xk|Z1...k) ∝ p(Zk|Xk)p(Xk|Z1...(k−1))
(Update). (2)

Here Xk denote hidden variables, or states, of the filter
on the k-th step, and Zk are the visible variables, or mea-
surements, Z1...(k) denote the measurements up to the step
k. Generally, both hidden variables and measurements can
contain the sets of variables, because we can consider many
measurements and many targets described by the state. The
update stage is usually carried out using either Maximum A
Posteriori (MAP) or Minimum Mean Square Error (MMSE)
estimate [6].

The stated problem can also be considered as a time-
consistent clustering. Given the set of measurements, we assign
each of the measurements label, which is either some object
or clutter, and consistently update the clustering with the same
labels on the same data during the algorithm operation. We
emphasise here that in this problem statement we do not
assume here point targets, as it is done in many multiple object
tracking methods like [1], [2] but perform time consistent
clustering.

In section II state-of-the-art methods for multiple object
tracking are reviewed. In section III the proposed Bayesian
filter is formulated for general, domain unspecific case. After
then, in section IV, the algorithm, capable of unsupervised
object detection and tracking, is proposed for video tracking.
After then, in section V, some experiments were carried out in
order to show the capabilities of the algorithm for unsupervised
object detection and tracking of the objects from moving
camera, followed by the conclusion.

II. STATE-OF-THE-ART

The variability of the state-of-the-art solutions arises from
the different models behind the motion detection, and on
miscellaneous approximations even for the same or similar
models. For example, for well-known PHD filter there are a
lot of recursive approximations based on particle filters and
Gaussian mixtures [3], [4], [5].

Classical Bayesian approaches to approximate inference
for multi-target tracking include different implementations of
Multiple Hypothesis Tracking (MHT) approach [7] and Joint
Probabilistic Data Association (JPDA) filter [8]. The problem
of tracking in the case of heavy clutter can be solved by R-
RANSAC algorithm [9], which extends RANSAC algorithm



[10] to tackle with a case when most of the measurements are
clutter.

MHT approach looks for the most probable assignment
of the targets to the measurements. It provides a natural
solution of the simultaneous tracking and detection problem
for the unknown number of targets. However, as the number
of hypotheses grow exponentially for each stage, the ways to
restrict the count of the hypotheses is needed as well to avoid
solving NP-hard problem. One of the possible solutions is to
prune the least probable hypotheses [11].

JPDA differs from MHT approach in terms of handling the
data association, i.e. unveiling the relation between the targets
and measurements. JPDA approach [8] uses the weighted sum
of the hypotheses on the association. To make this procedure
feasible, gating is applied, which helps to factor out abrupt
target state changes which are usually impossible for many
problems.

III. THE MULTIPLE OBJECT TRACKING FILTER

The multiple object tracking filter proposed in this article
propagates time-consistent mixture of Gaussians between the
video frames. The clutter and the targets are treated the same
way in this framework. Distinguishing between these types of
cluster occurs on the detection stage and is not carried out by
the tracker.

Here the model is defined within the Bayesian filter frame-
work and then describe the solution based on the variational
approximate inference.

First, we define hidden and visible varibles for the formulae
(1) and (2).

The visible variables set is the features set Dk =
{dk1 , dk2 , . . . , dknk

}, built upon the feature point tracks on the
k-th frame.

We assume that these visible variables are generated from
the mixture of K Gaussians, where the number K is pre-
defined, and the Gaussians are described by the sets µk

for Gaussian means, Σk for Gaussian covariance matrices,
and πk for Gaussian weights within the Gaussian mixture
for the k-th frame, where µk = {µk

1 , µ
k
2 , . . . , µ

k
K}, Σk =

{Σk
1 ,Σ

k
2 , . . . ,Σ

k
K}, πk = {πk

1 , π
k
2 , ... . . . π

k
K},

∑K
i=1 π

k
i = 1:

dki ∼ p(dki |µk,Σk, πk) =

K∑
j=1

πk
jN (dki |µk

j ,Σ
k
j ). (3)

We substitute these quantities into the Bayesian recursion
as:

p(Zk|Xk) = p(dki |µk,Σk, πk). (4)

The quantity p(Xk|Z1...(k−1)) is calculated on the pre-
diction state and relies on the probability p(Xk|Xk−1) =
p(µk,Σk, πk|µk−1,Σk−1, πk−1) and the previous stage pos-
terior probability p(Zk−1|Xk−1).

A. Prediction step

The prediction step do not use optimisation techniques and
relies on the assumption of the factorisation of the probability

p(Xk|Z1..k−1) =
∏K

i=1 p(µ
k
i |Z1..k−1)×

×
∏K

i=1 p(Σ
k
i |Z1..k−1)× p(πk|Z1..k−1).

(5)

Then, let us consider all these probabilities separately.

We assume the prediction model for means is given by the
transition probability

p(µk
i |Z1..k−1) = N (µk

i |Uiµ
k−1
i + Ti,Ψ

k
i ), k > 1. (6)

Here Ui is the between-frame rotation matrix, Ti is the
between-frame transition, both parameters are determined us-
ing Kabsch algorithm [16] over the subset of Dk, previously
assigned to the k-th cluster, and the details of its application
are described further in the object detection section. Ψk

i is
the covariance matrix over the L2-errors of the subset of
the features set Dk, previously assigned to the k-th cluster,
calculated as in formula (12).

The probabilities for the covariance matrices have more
convenient representation in terms of the precision matrices.
We denote precision matrices Λk

i = [Σk
i ]−1 and assume the

following (heuristical) transition

p(Λk
i |Z1...k−1) =W(Λk

i |W k−1
i , νk−1

i ), (7)

where W is the Wishart distribution, W k−1
i , νk−1

i is its
parameters, derived from the previous stage, non-negative
definite scale matrix and degrees of freedom, correspondingly,
Λk−1
i = (νk−1

i − l − 1)W k−1
i , where l is the feature space

dimensionality. The form of the distribution allows to preserve
the mean of covariance matrix.

For Gaussian weights, the prediction step is performed as

p(πk|Z1...k−1) = Dir

(
πk

∣∣∣∣∣ nkα
k−1∑K

i=1 α
k−1
i

)
(8)

Here Dir(·) is a Dirichlet distribution, and nk is a number of
measurements on the k-th stage.

B. Update step

On the update step, we need to solve the problem of MAP
distribution approximation.

We consider

p(Xk|Z1...k) ∝
∝ p(Zk|µk,Λk, πk)p(µk,Λk, πk|Z1...(k−1)).

(9)

To derive this posterior probability, we use approximate
inference according to [15]. We consider joint distribution

p(Zk, V k, πk, µk,Λk) =
= p(Zk|V k, µk,Λk)p(V k|π)p(πk)p(µk|Λk)p(Λk).

(10)

Here V k, referred as latent variables, are the set of nk
binary vectors of the size 1 × K, each summing up to



Fig. 1. The algorithm workflow

1, showing which component of the Gaussian mixture the
observation is sampled from.

After this stage, one can formulate the variational ap-
proximation for the posterior probability factorising between
the parameters and latent variables according to [15], which
allows to obtain the equations for the iterative update of the
parameters.

p̃(V k, πk, µk,Λk) = p(V k)p(π, µ,Λ). (11)

The solution is provided using Variational Expectation-
Maximisation [15] framework.

IV. THE VIDEO TRACKING ALGORITHM DESCRIPTION

The proposed video tracking filter was applied to multiple
target tracking on video. There exist different techniques
for video tracking, mostly based on distinction between the
clutter and targets, which is a part of tracking model, and
featuring data association techniques. Instead of this, here
these techniques are avoided, but Mixture of Gaussians model
is propagated in a time-consistent way, as a time-consistent
clustering. This method allows to decompose object tracking
and object detection stages.

The video processing algorithm workflow is depicted in
figure 1. First, the feature points detection is carried out, using
well known Harris algorithm [12]. Then, the tracks are com-
posed based on the feature points optical flow tracking. Then,
the Bayesian filter tracking is carried out, which supports the
mixture of Gaussians model update from frame to frame. Then,
the object detection is used to factor out the objects. We use
the criterion that the object should have discernible movement
within the frame using the background velocity model. This
model is estimated from the clusters with the largest support.
This criterion is pretty straightforward and can be replaced
depending on the practical applications. Then, the detected
objects are outputted as an outcome from the algorithm. The
algorithm 1 shows the overall video analysis and tracking
algorithm based variational Bayesian filter approximation.

A. Feature point detection

In this research we used well-known Harris corner point
detector [12], combined with sparse pyramidal Lukas-Kanade

Algorithm 1 Variational Bayesian filter approximation algo-
rithm

1: procedure MAIN
2: Tracks = ∅;
3: while fetch frame Ik from video stream do
4: Tracks = calculateAndTrackFeaturePoints (Ik, Pre-

viousTracks);
5: Features = calculateFeaturesFromTracks (Tracks);
6: FeaturesClusters = clusterTracks (Features, Fea-

turesClusters);
7: detectObjects(Tracks, Features, FeaturesClusters);
8: end while
9: end procedure

10: procedure NEWTRACKS =
CALCULATEANDTRACKFEATUREPOINTS(Ik ,
PREVTRACKS)

11: [FBErr, trackedPoints] = trackLu-
casKanadeFB(PrevTracks, Ik);

12: NewTracks are PrevTracks(FBErr < FBErrThreshold)
concatenated with corresponding trackedPoints;

13: NewTracksTmp = Detect new points using non-
maximum suppression and create new tracks;

14: NewTracks = union (NewTracks, NewTracksTmp);
15: end procedure
16: procedure FEATURES = CALCULATEFEATURESFROM-

TRACKS(TRACKS)
17: Initialise MatureTracks as tracks with NMature points.
18: [Rotation, Shift] = Kabsch

(MatureTracksk−NMature+1, MatureTracksk), where
MatureTracksk are the points in mature tracks from the
k−th frame;

19: Features = ∅;
20: for each track from MatureTracks do
21: features (track) = [KabschDifference (track, Rota-

tion, Shift), trackk];
22: end for
23: end procedure
24: procedure CLUSTERIDS = CLUSTERTRACKS(FEATURES,

FEATURESCLUSTERS)
25: for each row in features do
26: PredictStep (features, featuresClusters); (sec. III.A)
27: UpdateStep (features, featuresClusters); (sec. III.B)
28: end for
29: end procedure
30: procedure DETECTOBJECTS(TRACKS, FEATURES, FEA-

TURESCLUSTERS)
31: Initialise MatureTracks as tracks with NMature points.
32: [Rotation, Shift] = Kabsch

(MatureTracksk−NMature+1, MatureTracksk);
33: diff = ∅;
34: for all t in tracks do
35: diff(t) = KabschDifference (t, rotation, Shift);
36: end for
37: VarianceDiff = calculate variance (diff);
38: diffSorted = sortAscending(diff);
39: calculate velocity threshold T using the formula (14).
40: for each cluster k mark it as detected if for most of the

cluster’s points estimated velocity overcomes the threshold
T .

41: end procedure
42: procedure DIFF = KABSCHDIFFERENCE (TRACK, ROTA-

TION, SHIFT)
43: calculate difference between trackk−NMature+1 and

trackk according to the formula (13).
44: end procedure



Fig. 2. Track building process

tracker [13]. This combination is reasonable because Harris
detector provides points according to Hessian matrix condi-
tioning number, which is inverted when using Lukas-Kanade
algorithm for feature point tracking [12], [13].

The quality assessment of the feature point tracking is
carried out using forward-backward error concept [14].

To make sure that we can discover new objects we need
to prevent the feature points agglomeration in some particular
area of the image. For this purpose, non-maximum suppression
technique is used over the Harris corner point detector area
which allows to eliminate the local maxima close to the highest
one.

B. Track formation

Using the information based on Forward-Backward Lukas-
Kanade point tracking, we can build tracks representing the
movement of the same points between frames.

Tracks are defined as the point sequences tki =
{fsijsi , . . . , f

k
jk
}, where si is a frame index where the i-th track

starts, jk is the index of the point in the frame feature points
list fk. At each of the stages the points matched by the Lucas-
Kanade tracker are attached to the tracks.

In figure 2 all possible track development variants are
described.

The track 1 contains the points matched on every stage.
The points of the track 2 were matched on the (k + 1)-th
stage, but there were no matches after this stage.

The tracks 3 and 4 have difference below some pre-
defined threshold after the stage (k + 2), therefore they were
merged. Tracks 5 and 6 have appeared from the newly
detected points on the stage (k+2) and then were successfully
matched.

After each frame the tracks are trimmed to the last
NMature points, where NMature is a positive parameter.
The tracks which have NMature points are referenced as
mature.

C. Object detection

Unlike many state-of-the-art algorithms for object detection
with clutter, the proposed algorithm treats clutter within the
tracking framework absolutely the same way as the objects
itself. The objects are distinguished from the clutter only a
posteriori using object model.

To perform the detection of the object, we can rely on
the velocity criteria to distinguish the clutter and the object’s
measurements. The more distinguishable is the velocity of the
points cluster from the background the more likely it is to be
an object. However, other approach can also be considered,
like background model in case for the static camera.

The full list of the criteria is as follows:

• cluster velocity more than some dynamically adjusted
threshold, the estimation is described further in this
section;

• cluster stability more than some pre-defined threshold,
i.e. how many frames the cluster changed less than
some threshold (50%) of its points;

• cluster age above some pre-defined threshold, i.e. how
many frames the cluster has a support greater than
some pre-defined quantity of the points (typically, 0
or 1);

• the cluster size is not greater than some pre-defined
threshold (i. e. not larger than w/2 × h/2, where w
and h are the width and height of the video frames,
respectively).

All the criteria but the first, velocity, look straightforward.
Therefore, we concentrate on the description of the first
criteria. Consider two matched point sets Gk−1 and Gk having
nk elements, i. e. the sets with indexed elements where the
matching points from the different frames have the same
indices. Then we state the least squares problem∑nk

i=0 |Gk
i − Ĝk

i |2L2 → minU,T ,

Ĝk
i = Gk−1

i U + T,UUT = 1.
(12)

Here U is an orthogonal rotation matrix, T is a translation
vector, Ĝk

i considered as the linear approximation of the
movement law from frame to frame.

This problem is widely known and is solved analytically
using Kabsch algorithm [16]. This algorithm is deterministic,
and to improve this solution, we repeat this procedure several
times for the given percentage (e.g. 50%) of the best matched
data.

After this stage, we suppose that the rotation and shift
model is obtained for the background (we do not consider
issues caused by the perspective or other non-linear trans-
formations here). Therefore, we need to distinguish between
subtle movement of the background clusters (i.e. clutter)
from the significant movement of the object clusters. For this
purpose, the following heuristic was developed (figure 3):

• all matched points are sorted by their L2 error mag-
nitude

εk = |Gk
i − Ĝk

i |L2 ; (13)



Fig. 3. Threshold adjustment heuristic

Fig. 4. VIVID data set

• the variance S is calculated for the points;

• for j = 1 . . . nk at the first time when the difference
between the neighbouring points’ error scalars εk and
εk+1 exceeds τS, the error threshold T is initialised
as

T = (εk + εk+1)/2. (14)

After this stage, the clusters are selected if the number of
the points within the cluster with the estimation error above
the threshold is sufficiently large (e.g. > 50%).

V. THE ALGORITHM PERFORMANCE EVALUATION

To prove that the method gives good results comparing to
the previous ones, the tests with VIVID PETS 2005 data set
were carried out [19]. The data set depicts multiple vehicles
which are being tracked and contains marked positions of one
vehicle for each 10-th frame. The sample data frames from
VIVID data set are depicted in the figure 4.

Fig. 5. Output sample

TABLE I. RESULTS OF THE EXPERIMENTS

EgTest01 EgTest02 EgTest03 EgTest04 EgTest05
Match 0.9717 0.9225 0.8466 0.9005 0.8642
Size ratio 2.59 3.13 1.12 3.63 0.54
Match (method
[17])

0.9500 0.9302 0.8588 0.6000 0.8889

Size ratio
(method [17])

1.00 1.23 0.78 1.19 0.88

The results of the experiment presented in table I are
compared with those from the article [17], which method is
based on the set of Kalman filters for each of multiple targets
accompanied with data association techniques. The detection
is provided by estimating the background movement model
based on optical flow.

One can see stable pattern localisation in the proposed
algorithm. While the rival algorithm gives only 60% on the
EgTest04 data set, given algorithm yields 90%. One of the
output samples with marked bounding boxes is shown in figure
5.

VI. CONCLUSION

The method proposed in this article unites Bayesian fil-
tering approach to simultaneous object detection and tracking
with variational approximation. The result shown in the ex-
perimental section show the stability and robustness of the al-
gorithm outcome. The proposed Bayesian filter approximation
has a good generalisation power. It can be used with different
feature spaces, and also can be accompanied with different
object detection algorithms.

The research leading to these results has received funding
from the EUs Seventh Framework Programme under grant
agreement N607400. The research has been carried out within
the TRAX project.
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