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Abstract—Non-linear filtering is a challenging task and gen-
erally no analytical solution is available. Sub-optimal methods
like particle filters are employed to approximate the conditional
probability densities. These methods are expensive in terms of
the processing requirements. Recently proposed log homotopy
based particle flow filter, also known as Daum-Huang filter (DHF)
provides an alternative way of non-linear state estimation. Based
on different assumptions, several versions of DHF have been
derived. Superior performance has been reported for their use in
several non-linear but Gaussian filtering problems. In this paper
we compare the performance of different versions of DHF for
a coupled, non-linear and non-Gaussian system model. Results
show that recently proposed non zero diffusion DHF perform
better than previous versions of DHF.
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target tracking, Coupled model , Non-gaussian noise.

I. INTRODUCTION

State estimation of dynamical systems based on obser-
vations is a frequently occurring problem. State space for-
mulation is typically used for representing such systems. A
transition density describes the time evolution of the state
conditioned on the previous values, while a measurement
density describes the likelihood of measurements given the
current state. These densities are then used recursively for
the evaluation of prior and posterior state distributions at any
given moment of time. The process is known as recursive
Bayesian (RBE) estimation and arises in many real scenarios.
Finite dimensional analytical solution to the RBE problem
is available in few cases, mainly when the system model
is linear Gaussian (Kalman filter) or the finite state hidden
Markov model (HMM) [1]. Traditional methods for non-
linear state estimation include Extended (EKF) and Unscented
Kalman filter (UKF). However these methods are usually sub-
optimal and their performance degrades with the increase in the
non-linearity, and also when the transition and measurement
densities are non-Gaussian (e.g. multimodal, exponential).

Particle filters, also known as sequential Monte Carlo
(SMC) method provide an alternative way to the state esti-
mation. The main idea is to represent the posterior density
by a weighted set of random samples (particles), which are
then used to form the point estimates e.g. mean and variance
[2]. The posterior density under this settings approximately
represents the path distribution i.e. distribution of the state
through the time, conditioned on the measurements. Particles
are generally drawn from an importance / proposal density
which is easy to sample from, and then weighted. Weights

are further updated upon the arrival of the measurements,
based on their likelihood. Several version of particle filters
have been proposed in the literature e.g. Sampling importance
re-sampling (SIR) filter [3] also known as bootstrap particle fil-
ter (BPF), Auxiliary sampling importance resampling (ASIR)
filter [4] , regularized particle filter (RPF) [5] etc. Particle
filters suffer from the so called weight degeneracy. and curse
of dimensionality. Weight degeneracy refers to the fact that
after few updates all but one particle have negligible weights.
Weight degeneracy occurs when the target distribution does
not significantly overlap with the prior distribution. Several
solutions have been proposed to address these problem e.g.
re-sampling, the use of Markov Chain Monte Carlo (MCMC)
methods, use of bridging densities as suggested in [6] and
[7]. Bridging densities are obtained by varying the so called
progression parameter, which corresponds to the gradual in-
troduction of the measurements. In this manner the posterior
density can be better approximated. On the other hand, the
curse of dimensionality means that to maintain a certain
performance level, the required number of particles increases
exponentially with the increase in the state dimension, as
reported in [8].

A different approach to non-linear filtering has been sug-
gested by Daum and Huang in the series of papers [9]-[10].
The key idea is to model the transition of particles from
the prior to the posterior density as a physical flow under
the influence of an external force (measurements). Particles
are sampled from the state transition density and a notion
of synthetic time is introduced in which particles flow, until
they reach the correct posterior location. Stochastic differential
equations (SDE) define the flow of particles and the density
evolution. A flow vector is obtained by solving the SDE under
different assumptions, which is then integrated numerically
yielding updated particles states. The new filter is termed as
homotopy based particle flow filter or simply Daum-Huang
filter (DHF). Different flow solutions have been derived, in-
cluding the incompressible flow [9], zero diffusion exact flow
[11], Coulomb’s law particle flow [12], zero-curvature particle
flow [13] and non zero diffusion flow [14].

In this paper we compare the performance two main ver-
sions of the DHF against the traditional methods like EKF and
the BPF for a coupled, non-linear and non-Gaussian problem.
We present different versions of the DHF in section II. In
section III we describe the dynamical model used in the study.
Simulation methodology and the results are described in the
section IV which is followed by the discussion in the section
V. Finally the conclusion is given in the section VI.



II. HOMOTOPY BASED PARTICLE FLOW FILTER (DHF)

Let xk ∈ Rd denote the state vector and zk ∈ Rm denote
the measurement vector at time k. Also let Zk denote the set
of measurements up to time k including zk, Zk = {z1, z2 , ...
, zk }. The state space model can be expressed in the terms
of conditional probabilities,

xk+1 ∼ p(xk+1|xk) (1)
zk+1 ∼ p(zk+1|xk+1) (2)

p(xk+1|xk) and p(zk+1|xk+1) are referred to as the transition
and the measurement/likelihood densities. Assuming additive
process and measurement noises wk and vk we can write

p(xk+1|xk) = pwk
(xk+1 − ϕk(xk)) (3)

p(zk+1|xk+1) = pvk(zk+1 − ψk(xk+1)) (4)

where ϕk is termed as the process / dynamical model and
ψk as the measurement model. According to the Bayes the-
orem the prior density p(xk+1|Zk) and the posterior density
p(xk+1|Zk+1) are recursively defined as,

p(xk+1|Zk) =
∫
p(xk+1|xk)p(xk|Zk)dxk (5)

p(xk+1|Zk+1) =
p(zk+1|xk+1)p(xk+1|Zk)

p(zk+1|Zk)
(6)

where p(xk|Zk) is posterior density at time k. The conditional
density p(zk+1|Zk) appears as a normalization constant in
the measurement update formula. In particle filters, the prior
and posterior densities are recursively estimated by solving
these equations. In its most basic form, an initial set of
particles is drawn from some initial distribution. State up-
date is performed by sampling from an importance density.
On the arrival of measurements, the particles are weighted
according to their likelihood. Finally the most likely particles
are replicated and assigned uniform weights, while the rest
are discarded. This procedure is performed recursively. Log
homotopy based particle flow filter also termed as the Daum-
Huang particle flow filter (or simply the Daum-Huang filter
DHF), as described in [15],[10] and [11], shares the importance
sampling step with the BPF but it specifically uses the prior
distribution of the state vector p(xk+1|xk) as the importance
density. The main difference lies in how the measurements are
incorporated to derive the posterior density. The idea here is
to model the motion of particles from the prior to the posterior
density in a way analogous to the flow of physical particles.
A log-homotopy function log p(xk, λ) is defined through the
homotopy parameter λ,

log p(xk+1, λ) = log g(xk+1)+λ log h(xk+1)−logK(λ).
(7)

where g(xk+1) represents the prior p(xk+1|Zk), h(xk+1) the
likelihood p(zk+1|xk+1) and λ the artificial/synthetic time
varying from 0 to 1. K(λ) is the normalization constant for the
posterior density independent of xk+1. λ = 0 sets p(xk+1, λ)
equal to the prior density while with λ = 1 the transformation
is completed to the normalized posterior density. From now
onwards, we drop the time index k for the sake of convenience
and ignore the normalization constant K(λ). It is supposed that
the flow of particle obey’s the Ito SDE,

dx = f(x, λ)dλ+ σ(x, λ)dw (8)

where f(x, λ) is the flow vector, w is the M-dimensional
Wiener process with diffusion term σ(x, λ). State x is assumed
to be an implicit function of λ. For a flow characterized as in
(8), the evolution of the density p(x, λ) w.r.t the parameter
λ is given by the Fokker-Planck equation (also known as
Kolmogorov forward equation),

∂p(x, λ)
∂λ

= −
d∑
i=1

∂

∂xi
[fi(x, λ)p(x, λ)]

+
1

2

d∑
i=1

d∑
j=1

∂2

∂xi∂xj
[Qi,j(x, λ)p(x, λ)] (9)

where Qi,j(x, λ) is the diffusion matrix. Different flow so-
lutions have been obtained by solving equation (9) under
different assumptions. Here we discuss three types of flows
derived by F.Daum and J.Huang in their series of papers.

A. Incompressible flow filter

This version of the DHF is described in the [9]. Two
assumptions are made. First the diffusion term σ(x, λ) in
equation (8) is considered to be zero and second, the flow
is considered incompressible, i.e. ∇f(x, λ) = 0. This leads to
the incompressible flow equation,

dx
dλ

= − log h(x)
∇ log p(x, λ)

||∇ log p(x, λ)||2
(10)

where ∇ refers to the vector differential operator. Implemen-
tational details are described in detail by the authors in [16].
Incompressible flow is generally inferior to exact flow [17],
hence we do not consider it here for comparison.

B. Zero diffusion exact flow filter

If the diffusion term is still assumed to be zero but the
flow is allowed to be compressible, following equation can be
derived using the equations (7) and (9),

log h(x) + [∇ log p(x, λ)]T · f(x, λ) = −∇ · f(x, λ) (11)

Different flows have been derived in [18] based on solutions
to equation (11). One particular solution relates to the case
of log g(x) and log h(x) are polynomials in the component of
vector x. Then an analytical solution termed as the Exact flow
can be derived as,

dx
dλ

= A(λ)x + b(λ) (12)

where

A(λ) = −1

2
PHT (λHPHT + R)−1H (13)

b(λ) = (I + 2λA)[(I + λA)PHTR−1z + Ax̄] (14)

P is the prediction error (prior) covariance matrix , H is the
measurement matrix, R is the measurement noise covariance
matrix, z is the measurement vector and x̄ is the prior state
mean. For non linear systems, the measurement model can be
linearized by the Taylor series expansion up to the first term,
such that H = ∂ψ

∂x

∣∣∣
xλ

and z ≈ z − ψ(xλ) + Hxλ. Derivation
of the exact flow has been described in detail in [19]. We
abbreviate this filter type as ZDEF-DHF.
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C. Non-zero diffusion constrained flow

Another flow equation can be derived by not ignoring the
diffusion term in equation (9). The derivation of this flow is
given in [14]. Here we only show the result,

dx
dλ

=
[
∇2 log p(x, λ)

]−1[∇ log h(x)
]T

(15)

with the constraint

∇[∇ · f(x, λ)] +
[
∇ log p(x, λ)

][
∇f(x, λ)

]T
=

∇
[

1

2p(x, λ)
∇ · (Q(x, λ) · ∇p(x, λ))

]
(16)

The hessian of log p(x, λ) can be computed as

∇2 log p(x, λ) = ∇2 log g(x) + λ∇2 log h(x) (17)
≈ −C−1 + λ∇2 log h(x) (18)

where C−1 is the prior error covariance matrix taken from
a parallel running EKF/UKF. Hessian of the log-likelihood,
∇2 log h(x), can be calculated analytically in most cases. We
abbreviate filter based on this flow as NZDCF-DHF.

III. SYSTEM MODEL

We consider tracking of multiple targets in a 2D space
using the range and bearing measurements. Targets states are
inter-dependant, therefore resulting in a non-linear coupled
dynamical model. Furthermore, target association is assumed
to be perfectly known and hence we do not use any data
association algorithm. The state vector for the target i at time
instant k is x(i)k = (x

(i)
k , y

(i)
k , ẋ

(i)
k , ẏ

(i)
k ), where x

(i)
k and y

(i)
k

represent the position while ẋ(i)k and ẏ(i)k representing velocity
components along the x and y-axis respectively. The over all
state vector is formed by concatenating the individual target

state vectors xk = [x(1)k , x(2)k . . . x(N)
k ]. Also the measurement

vector for the target i is given by z(i)k = (r
(i)
k , θ

(i)
k ), where r(i)k

is the range to the target while θ(i)k is the target bearing. The
overall measurement vector at time k is generated in a similar
way. The process model is described in equations (D1), where
axk+1

and ayk+1
∼ N (0, σ2

a), ∆t is the time discretization
step size and N is the total number of targets. The intuition
behind the model is to make the targets motion coupled to
each other. The target (i = 1) is pursued by all other targets
(i > 1). The changes in the speed and direction of the targets
depends on their relative distances to each other. κ1, κ2 and
κ3 are the coupling constants in the model. Π1

xk
and Π1

yk
control the speed/direction change for the pursued target and is
inversely proportional to the sum of its relative distances to the
all others. As pursuers come close, the pursued target speed is
increased and together with a direction change. The direction
change is realized by the terms v2t

rt
cos( vtrt k) and v2t

rt
sin(vtrt k).

rt and vt are the turning radius and velocity respectively and
δ is a small offset. Similarly, the speed and direction changes
for the pursuers are controlled by the terms Πixk

and Πiyk . If
κ1, κ2 and κ3 are set to zero, then state dynamics corresponds
to standard discrete white noise acceleration (DWNA) model.
The measurement model for the ith target is given by equations
(D2). The range measurement noises vrk+1

∼ N (0,Rr) are
mutually correlated but are independent w.r.t. the bearing mea-
surement noises vθk+1

. Bearing measurement noise elements
viθk+1

are exponentially distributed with the scale paramter
β, such that E[(viθk+1

)2] = β2 and E[viθk+1
vjθk+1

] = 0. Rr
represent the covariance matrix of vrk+1

with σ2
r = E[(virk+1

)2]

and σ2
rx = E[virk+1

vjrk+1
]. σ2

rx is assumed to be same for any
two targets. Measurement noises are chosen as such in order to
create a challenging estimation scenario, in which the relative
strength of the particle flow method can be tested against more
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Fig. 1: Trajectory for a (a) Un-coupled model, (b) Weakly coupled model & (c) Strongly coupled model

traditional solutions like the EKF and the Particle filter. The
likelihood function can be written as in equation (D3).

IV. SIMULATIONS & RESULTS

Our basic idea is to test the performance of the different
versions of DHF for a high dimensional, non-linear, non-
Gaussian system. Numerical results for the DHF have been
mentioned in [17] and [12]. We find two other sources who
have picked up on DHF and have tried to implement. First,
DHF based on the incompressible flow and ZDEF have been
implemented by Choi. et.al. in [16] for a non-linear Scaler
and a linear vector system models. Particles are generated by
sampling the transition density. An EKF/UKF is run in parallel
to the main algorithm. This is done in order to approximate
the prior covariance matrix. Hence there is performance de-
pendency of DHF on the EKF/UKF. It has been reported that
the ZDEF-DHF performs superior to the incompressible flow
filter, EKF, UKF and achieve better accuracy than a standard
particle filter with fewer particles. We call this implementation
as the original ZDEF-DHF. The second implementation of the
ZDEF-DHF has been reported by Ding and Coates in [19],
and a pseudo-code is also provided. Make two distinct changes
are made to the original ZDEF-DHF. In the first modification
the linearization of the measurement equation is carried out
for individual particles, as opposed to being done only at the
prior mean location. The second modification is related to the
feedback of the DHF state estimates to the EKF, making the
filters coupled. In this study we consider two cases, 1) the
first modification alone and 2) with the feedback. We call these
implementations as modified ZDEF-DHF and modified ZDEF-
DHF-FB respectively. As per our knowledge, no results have
yet been published for the NZDCF-DHF. The implementation
for the NZDCF-DHF is done on the same lines as for the
modified ZDEF-DHF (without feedback).

We simulate four targets (N =4) in our analysis. ∆t is set
to 1, σ2

a to 50 ms−2, σ2
r is set to 10000m2, σ2

rx to 3
10σ

2
r , while

β2 is set to 1
10 rad2. Since the process and measurement noises

have high covariance and the bearing noise is assumed to be
non-Gaussian, the state estimation becomes quite challenging.
In particular we note that σr < Di,kσθ ∀i, k, where Di,k

represents the distance of ith target from the radar location
at time instant k. Three sets of coupling constants {κ1, κ2
and κ3} are used, {0,0,0}, {100, 0.005, 0.005} and {8000,
0.05, 0.1}. First set refers to an un-coupled model, second to
a weakly coupled while and the third to a strongly coupled
model as shown in figures 1a, 1b and 1c respectively. The
turn radius rt and turn speed vt are set to 200 m and
10 ms−1 while δ is set to 0.001. Targets position element
are initialized by sampling Gaussian distribution with mean

of 20000 m and variance of 5000 m2, while the velocity
elements from Gaussian distribution with mean and variance
of 100 m and 100 m2 respectively. EKF is initialized by
sampling the Gaussian with initial state vector as mean and
with variances 105 and 1 for the position and the velocity
respectively. Particles are draw for DHF and BPF in a similar
way. The discretization of pseudo-time λ is critical for the
filters performance. As stated in [14], the incompressible flow
and ZDEF- DHF can implemented with uniform step size
∆λ = 0.1 but not for NZDCF-DHF. For comparison between
the two flows, we plot the average of the flow vector norm
1
Np

Np∑
i=1

|f(xi, λ)| against λ for both ZDEF and NZDCF, in the

case of the strongly coupled motion. Here the averaging is
done across the number of particles (Np),
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Fig. 2: Log homotopy based flow vs. λ

We note that the normed averaged ZDEF starts around
5000 and is fairly smooth, exhibiting an order of magnitude
change in the interval between 10−3 and 1. On the other
hand the NZDEF is much more dynamic and an approximately
three order of magnitude change can be observed in the same
interval. This implies that, if the flow is coarsely sampled,
say uniformly with ∆λ = 0.1, the loss in performance for
NZDCF-DHF can be far greater than for ZDEF-DHF as the
flow dynamics would not be captured sufficiently well. One the
other hand, a very fine λ discretization can lead to an increased
computational cost. Therefore, in this work we choose a middle
ground and use 39 exponentially spaced λ points between 0
and 1, as recommended in [14].

We use root average mean square error (RAMSE) as the
performance metric. It is defined as following. Let M be the
total number of simulation runs for a particular scenario, xi,mk
and yi,mk denote the positions of the ith target along X and Y-
axis respectively, at time instant k in the mth trial. Likewise,
let x̂i,mk and ŷi,mk denote estimated positions for the ith target.



The RAMSE εd is then defined as,

εd =

√√√√ 1

M

M∑
m=1

[
2

d

d∑
i=1

((
xi,mk − x̂i,mk

)2

+
(
yi,mk − ŷi,mk

)2
)]

(19)
In figure 3, we plot the RAMSE(εd) for the target positions as
a function of time for the EKF , different versions of DHF (Np
= 100) and BPF with 104 and 2.5×104 particles, averaged over
fifty simulation runs (M = 50). There are three figures, one
each for the un-coupled, weakly coupled and strongly coupled
models.
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Fig. 3: Dimension-free error for (a) un-coupled , (b) weakly
coupled and (c) strongly coupled model.

First we discuss the uncoupled model. All targets move
independently of each other. We observe that until 30s, εd for
all filters grow almost linearly. After that the εd for EKF and
ZDEF-DHF grow faster than that of BPF and NZDCF-DHF.

NZDCF-DHF has the lowest RAMSE amongst all version
of DHF. In particular, Original ZDEF-DHF has the worst
performance. The BPF with 10000 and 25000 particles have
almost similar performance. It can be noted that the error is
generally high for all filters. This can be attributed to the use of
high values of process and measurement noise covariances. For
the weakly coupled model, targets trajectories are loosely inter-
dependent. RAMSE for DHF/EKF start diverging earlier in
this case. Again, we note that the BPF are the best performers,
filter with 25000 particles having a slightly better performance.
NZDCF-DHF outperforms all other versions of the DHF and
the EKF as before but is beaten by the BPF. Actually in this
case the difference in the εd between the BPF and NZDCF-
DHF is higher. At last we discuss the strongly coupled model.
Here, the pursuing targets tightly follow the lead target. This
might lead to a rapid change in the direction and speed,
which coupled with high noise covariances can lead to worse
estimation of targets positions. We observe quite significant
difference in the performance of different DHF variants. All
DHF variants except the NZDCF-DHF, perform even worse
than the EKF. The modified ZDEF-DHF-FB has the worst
performance. The NZDCF-DHF, even tough better than other
DHF and EKF, still does not outperform the BPF.

Next we compare the execution time τexec for a single
recursion, including both the time and the measurement update
steps. Simulations were performed on the computer with Intel
Core2 Quad with 2.66 GHz processors and 4 GB RAM. The
τexec was 0.0005s for EKF, 0.011s for original ZDEF-DHF ,
0.75s for modified ZDEF-DHF, 1.43s for NZDCF-DHF, and
1.16s and 4.34s for BPF with 10000 and 25000 particles. The
main requirement for the NZDCF-DHF is that the log p(x, λ)
is no-where vanishing, twice differentiable and with a non-
singular hessian matrix [14]. These requirements are met in
our case.

V. DISCUSSION

We have seen that the DHF performance, even though
better than the EKF, is still not superior to the BPF with
similar execution time. There could be several reasons for this
particular behavior. That includes the theoretic considerations
e.g. approximations made while deriving the flow solutions,
and the implementation aspects like the use of relatively simple
Euler’s integration method for numerically solving the flow
equation etc. Also, DHF particles are sampled from p(xk+1|xk)
just like in a BPF. A better choice of the importance density
could lead to the better estimation. The idea of importance
sampling with a particle flow has been used in [20], where
filtered particles are not directly used for the evaluation of
the point estimates. Instead, they are considered as samples
from an importance density and hence are assigned weights.
This allows for the corrections of the approximation errors. In
the case of high weight variance, a MCMC step can also be
used. Finally, the performance of all DHF variants depends on
the accuracy of the prior covariance matrix estimation. In the
current work, it is obtained from a parallel running EKF. A
better approximation to the prior covariance matrix estimation
might also improve the estimation accuracy.

VI. CONCLUSION

We have studied the state estimation of a coupled, non-
linear and non-Gaussian system model using DH filters. Sev-



eral versions of DHF exist, that have been derived based on
different sets of assumptions. Estimates from a parallel running
EKF/UKF is used to approximate the prior covariance matrix.
Different degrees of coupling in the dynamic model leads to
different results. Though NZDCF-DHF performs better than
all other versions of DHF and the EKF, it is outperformed
by the BPF with the same order of execution time. The
difference in the performance is greatest when the motion
of the targets is strongly coupled. Improved performance for
NZDCF-DHF can be expected with the increase in the number
of particles, better estimates for the prior covariance matrix and
importance weighting of the particles. Also adaptive psuedo
time discretization can help in reducing the execution time.
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